Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability
نویسندگان
چکیده
PURPOSE OF REVIEW Atherosclerotic plaque rupture and subsequent acute events, such as myocardial infarction and stroke, contribute to the majority of cardiovascular-related deaths. Calcification has emerged as a significant predictor of cardiovascular morbidity and mortality, challenging previously held notions that calcifications stabilize atherosclerotic plaques. In this review, we address this discrepancy through recent findings that not all calcifications are equivalent in determining plaque stability. RECENT FINDINGS The risk associated with calcification is inversely associated with calcification density. As opposed to large calcifications that potentially stabilize the plaque, biomechanical modeling indicates that small microcalcifications within the plaque fibrous cap can lead to sufficient stress accumulation to cause plaque rupture. Microcalcifications appear to derive from matrix vesicles enriched in calcium-binding proteins that are released by cells within the plaque. Clinical detection of microcalcifications has been hampered by the lack of imaging resolution required for in-vivo visualization; however, recent studies have demonstrated promising new techniques to predict the presence of microcalcifications. SUMMARY Microcalcifications play a major role in destabilizing atherosclerotic plaques. The identification of critical characteristics that lead to instability along with new imaging modalities to detect their presence in vivo may allow early identification and prevention of acute cardiovascular events.
منابع مشابه
Systemic atherosclerotic plaque vulnerability in patients with Coronary Artery Disease with a single Whole Body [FDG]PET-CT scan
Objective(s): Cardiovascular disease is a leading cause of morbimortality with over half cardiovascular events occurring in the asymptomatic population by traditional risk stratification. This preliminary study aimed to evaluate systemic plaque vulnerability in patients with prior Coronary Artery Disease (CAD) with a single Whole Body [FDG] PET-CT scan in terms of plaq...
متن کاملMicrocalcifications as seen in epoxy-embedded carotids using a trichromic staining
Atherosclerotic plaques that undergo rapid progression to stenosis are responsible of stroke or acute coronary syndrome. The vulnerability of the atherosclerotic plaque may be enhanced due to the presence of microcalcifications. Our aim was to analyze microcalcifications on epoxy resin-embedded semithin sections from bioptic samples of carotid endarterectomies. An original trichromic method con...
متن کاملDetecting microcalcifications in atherosclerotic plaques by a simple trichromic staining method for epoxy embedded carotid endarterectomies
Atherosclerotic plaques have a high probability of undergoing rapid progression to stenosis, becoming responsible of acute coronary syndrome or stroke. Microcalcifications may act as enhancers of atherosclerotic plaque vulnerability. Considering that calcifications with a diameter smaller than 10 mm in paraffin embedded tissue are rather difficult to detect, our aim was to analyze microcalcific...
متن کاملGenesis and growth of extracellular vesicle-derived microcalcification in atherosclerotic plaques
Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth ...
متن کاملApplication of Confocal Microscopy for 3D Assessment of Carotid Plaque Structure: Implications for Carotid Blood Flow and Stroke Research.
BACKGROUND Little information is available on how forces resulting from fluid flow interact with structural stability of carotid atherosclerotic plaque and how such interactions may impact on stroke prevention; investigation of the 3D structure of plaque could help in such studies. The aim of this study was to investigate whether confocal microscopy can be used to obtain 3D visualization of the...
متن کامل